2017考研数学(2017考研数学二真题)

访客2023-08-24 17:38:5614

  问题:设函数f(x)在[0,+∞)上存在二阶导数,f(0)=0,f’(0)>0,f’’(x)≤a<0,其中a为常数.

  证明:(1) 存在x0>0,使f’(x0)=0;

  (2)方程f(x)=0在(0,+∞)内有唯一实根.

  【思路分析】:两个问题都是证明根的存在性,加一个唯一性。

  ● 存在性的常用证明思路:零点定理(直接验证函数满足零点定理的条件)、罗尔定理(验证一个原函数满足罗尔定理的条件)

  ● 唯一性的常用证明思路:单调性、反证法

  【证明一】:因为f(x)在[0,+∞)上存在二阶导数,即f(x), f’(x)在[0,+∞)上连续, 且f’’(x)在[0,+∞)上存在, 所以由泰勒公式, 有

  由于f’’(x)≤a<0,所以

  并且有

  由极限的保号性, 则存在X>0, 当x∈(X,+∞)时,

  所以

  由导数的定义, 有

  同样由极限的保号性, 存在x∈(0,δ), 使得

  所以

  所以由零点定理, 在[x2,x1]上, 可知存在 c∈(x2,x1), 使得 f(c)=0. 所以在[0,c]上使用罗尔定理, 则有x0∈(0,c), 使得f’(x0)=0.

  假设除了c外函数还有一个非零的零点x3, 则有0, c, x3为函数f(x)的零点,则两两使用罗尔定理可得两个一阶导数等于零的点, 对一阶导数结果再使用罗尔定理, 可得存在二阶导数等于0的点, 所以与二阶导数小于0矛盾,因此函数只有一个非零的零点.

  【证明二】(1)【证明一】:由拉格朗日中值定理,对任意x>0,有

  由于f’’(x)≤a<0,x>0,所以存在x1>0,使f’(x1)<0(参考证明一),

  故由零点定理可知,存在 x0∈ (0,x1),使f’(x0)=0.

  (1)【证明二】:拉格朗日中值定理,对任意x>0,并由f’’(x)≤a<0,有

  取

  则有

  故由零点定理可知,存在x0∈(0,x1),使f’(x0)=0.

  (2) 【证法一】

  (根的唯一性)因为f’’(x)≤a<0,所以f’(x)在[0,+∞)上单调递减. 由此可得:

  当0<x<x0时,f’(x)> f’(x0)=0,从而f(x)严格单调增加,即有f(x0)>f(x)>f(0)=0,则方程f(x)=0在0<x<x0内无实根.

  当x>x0时,f’(x)<f’(x0)=0,则f(x)在严格单调递减,方程f(x)=0在x>x0时至多只有一个实根.

  (根的存在性证明一)由拉格朗日中值定理,有

  由于f’(x0)=0,所以

  再由拉格朗日中值定理,存在η∈(x0,x),使得

  由于a<0,所以存在x2>x0,使f(x2)<0(参照证明一),由零点定理,存在c∈(x0,x2),使f(c)=0,即方程f(x)=0在(0,+∞)内有唯一实根x=c.

  (根的存在性证明二)f(x)在x0处的一阶泰勒公式为

  所以可得:存在x2>x0,使f(x2)<0(参照证明一),由零点定理,存在c∈(x0,x2),使f(c)=0,即方程f(x)=0在(0,+∞)内有唯一实根x=c.

  (2)【证法二】:(根的唯一性)因为f’’(x)≤a<0,所以曲线y=f(x)在[0,+∞)上是严格凸的,又由f(0)=0,f’(x0)=0,可知,x0为f(x)在(0,+∞)内唯一的驻点,且取更大值f(x0)>0. 并且当0<x<x0时,

  f(x)严格单调递增,f(x)>0;当x>x0时,f(x)严格单调递减,于是f(x)=0在(0,+∞)内最多有一个根,且若存在只能在(x0,+∞)内.

  (根的存在性)f(x)在x0处的一阶泰勒公式为

  取

  有

  由零点定理,存在c∈(x0,x2),使f(c)=0,即方程f(x)=0在(0,+∞)内有唯一实根x=c.

  【注】以上集成多位老师、同学解题思路与过程,欢迎指出解题过程中的问题,更希望有更多更好的证明 *** 分享、交流!谢谢

  更多相关内容请关注微信公众号:考研实验数学(ID: xwmath),我们的大学数学公共基础课程分享交流平台!

控制面板

您好,欢迎到访网站!
  查看权限

最新留言