离散数学公式总结(离散数学公式总结doc下载)
1.离散型随机变量的均值与方差
一般地,若离散型随机变量X可能取得不同值为x1,x2,…,xi,…,xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=pi,则下表称为随机变量X的概率分布列,简称为X的分布列.
E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
称D(X)=2pi为随机变量X的方差,它刻画了随机变量X与其均值E(X)的平均偏离程度,其算术平方根为随机变量X的标准差.
注意
:随机变量的均值,方差实常数,它们不依赖于样本的抽取,而样本的平均值、方差是随机变量,它们随着样本的不同而变化.2.均值与方差的性质
若Y=aX+b,其中a,b是常数,X是随机变量,则均值的性质:(1)E(k)=k(k为常数);(2)E(aX+b)=aE(X)+b;(3)E(X1+X2)=E(X1)+E(X2);(4)若X1,X2相互独立,则E(X1·X2)=E(X1)·E(X2).
3.期望与方差的一般计算步骤
(1)理解X的意义,写出X的所有可能取得值;
(2)求X取各个值的概率,写出分布列;
(3)根据分布列,正确运用期望与方差的定义或公式进行计算.
4.利用期望与方差进行决策
利用随机变量的期望与方差可以帮助我+们作出科学的决策,其中随机变量ξ的期望的意义在于描述随机变量的平均程度,而方差则描述了随机变量稳定与波动或集中与分散的状况.品种的优劣、仪器的好坏、预报的准确与否、机器的性能好坏等很多指标都与这两个特征量有关.
(1)若我们希望实际的平均水平较理想时,则先求随机变量ξ1、ξ2的期望,当E(ξ1)=E(ξ2)时,不应误认为它们一样好,需要用D(ξ1),D(ξ2)来比较这两个随机变量的偏离程度,偏离程度小的更好.
(2)若我们希望比较稳定时,应先考虑方差,再考虑均值是否相等或者接近.
(3)若没有对平均水平或者稳定性有明确要求时,一般先计算期望,若相等,则由方差来确定哪一个更好.若E(ξ1)与E(ξ2)比较接近,且期望较大者的方差较小,显然该变量更好;若E(ξ1)与E(ξ2)比较接近且方差相差不大时,应根据不同选择给出不同的结论,即是选择较理想的平均水平还是选择较稳定.
经典例题
:设0〈p〈1,则随机变量ξ的分布列如下表,则当p在内增大时,
A. D(ξ)减小
B. D(ξ)增大
C. D(ξ)先减小后增大
D. D(ξ)先增大后减小
解题思路
:用离散型随机变量期望公式与方差公式解题。解析
:由题意得
∴D(ξ)在上递增,在上递减,即当p在内增大时,D(ξ)先增大后减小,故选D。
答案
:D
Tags:
相关推荐
- 湖北三江航天建筑工程有限公司以 60925996.99 元中标红林总装厂房二期工程
- 江西省天久地矿建设集团有限公司中标龙里县城区排涝工程勘测
- 北京中和联信供应链管理有限公司中标山地农业科技创新基地植物表型研究设备采购及伴随服务(重新招标)项目,中标金额 7764000 元
- 霸州市佳理鑫五金制品厂中标新乐市第三中学采购项目
- 河北泽辉市政工程有限公司等为路南区乡村振兴环境综合治理项目(一期)一标段工程总承包(EPC)(二次)中标候选人
- 河北石府建设工程有限公司10110736.93元中标高铁片区景观提升项目施工三标段
- 中基恒源建设有限公司中标高铁片区(含新华商业广场)景观提升项目施工五标段,中标价 13430852.95 元
- 九芝堂换帅完成工商变更
- 山西建设投资集团有限公司为大宁县水果供应链基地运营配套建设项目施工(二次)第一中标候选人
- 浙江宁慈建设工程有限公司以97028327元中标慈溪市城市生活垃圾收转运一体化建设项目(一期)
