等差数列基本的5个公式(等差数列基本的5个公式有哪些)
数学大师
01.等差数列求和公式1.公式法
2.错位相减法
3.求和公式
4.分组法
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
5.裂项相消法
适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。
【小结】此类变形的特点是将原数列每一项拆为两项之后,其中中间的大部分项都互相抵消了。只剩下有限的几项。
【注意】余下的项具有如下的特点:
1、余下的项前后的位置前后是对称的。
2、余下的项前后的正负性是相反的。
6.数学归纳法
一般地,证明一个与正整数n有关的命题,有如下步骤:证明当n取第一个值时命题成立;
假设当n=k时命题成立,证明当n=k+1时命题也成立。
例:
求证:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + .…… + n(n+1)(n+2)(n+3) = /5
证明:
当n=1时,有:
1×2×3×4 = 24 = 2×3×4×5/5
假设命题在n=k时成立,于是:
1×2x3×4 + 2×3×4×5 + 3×4×5×6 + .…… + k(k+1)(k+2)(k+3) = /5
则当n=k+1时有:
1×2×3×4 + 2×3×4×5 + 3×4×5×6 + …… + (k+1)(k+2)(k+3)(k+4)
= 1×2×3×4 + 2×3×4*5 + 3×4×5×6 + …… + k(k+1)(k+2)(k+3) + (k+1)(k+2)(k+3)(k+4)
= /5 + (k+1)(k+2)(k+3)(k+4)
= (k+1)(k+2)(k+3)(k+4)*(k/5 +1)
= /5
即n=k+1时原等式仍然成立,归纳得证
7.并项求和法
例:1-2+3-4+5-6+……+-2n
方法一:
求出奇数项和偶数项的和,再相减。
方法二:
+++……+
方法三:
构造新的数列,可借用等差数列与等比数列的复合。
an=n(-1)^
02.等差数列判定及其性质等差数列的判定
a(n+1)--a(n)=d (d为常数、n ∈N*)等价于{a(n)}成等差数列。
2a(n+1)=a(n)+a(n+2) 等价于{a(n)}成等差数列。
a(n)=kn+b 等价于{a(n)}成等差数列。
S(n)=A(n)^2 +B(n) 等价于{a(n)}为等差数列。
特殊性质
在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和;特别的,若项数为奇数,还等于中间项的2倍。即,a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=···=2*a中
例:数列:1,3,5,7,9,11中a(1)+a(6)=12 ; a(2)+a(5)=12 ; a(3)+a(4)=12 ; 即,在有穷等差数列中,与首末两项距离相等的两项和相等。并且等于首末两项之和。
数列:1,3,5,7,9中a(1)+a(5)=10 ; a(2)+a(4)=10 ; a(3)=5=/2=/2=10/2=5 ; 即,若项数为奇数,和等于中间项的2倍,另见,等差中项。
数学大师
Tags:
相关推荐
- 湖北三江航天建筑工程有限公司以 60925996.99 元中标红林总装厂房二期工程
- 江西省天久地矿建设集团有限公司中标龙里县城区排涝工程勘测
- 北京中和联信供应链管理有限公司中标山地农业科技创新基地植物表型研究设备采购及伴随服务(重新招标)项目,中标金额 7764000 元
- 霸州市佳理鑫五金制品厂中标新乐市第三中学采购项目
- 河北泽辉市政工程有限公司等为路南区乡村振兴环境综合治理项目(一期)一标段工程总承包(EPC)(二次)中标候选人
- 河北石府建设工程有限公司10110736.93元中标高铁片区景观提升项目施工三标段
- 中基恒源建设有限公司中标高铁片区(含新华商业广场)景观提升项目施工五标段,中标价 13430852.95 元
- 九芝堂换帅完成工商变更
- 山西建设投资集团有限公司为大宁县水果供应链基地运营配套建设项目施工(二次)第一中标候选人
- 浙江宁慈建设工程有限公司以97028327元中标慈溪市城市生活垃圾收转运一体化建设项目(一期)
